Indicators of climate warming in minnesota : Lake ice covers

Moderators: satchmoa, Andrew Revering

Indicators of climate warming in minnesota : Lake ice covers

Postby PaddlerJimmy » Tue Jul 08, 2008 9:14 pm

Indicators of Climate Warming in Minnesota : Lake Ice Covers and Snowmelt Runoff
Stephanie Johnson, St Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota

Abstract - 2006
Records of hydrologic parameters, especially those parameters that are directly linked to air temperature, were analyzed to find indicators of recent climate warming in Minnesota, USA. Minnesota is projected to be vulnerable to climate change because of its location in the northern temperate zone of the globe. Ice-out and ice-in dates on lakes, spring (snowmelt) runoff timing. spring discharge values in streams, and stream water temperatures recorded up to the year 2002 were selected for study. The analysis was conducted by inspection of 10-year moving averages, linear regression on complete and on partial records, and by ranking and sorting of events. Moving averages were used for illustrative purposes only. All statistics were computed on annual data. All parameters examined show trends, and sometimes quite variable trends, over different periods of the record. With the exception of spring stream flow rates the trends of all parameters examined point toward a warming climate in Minnesota over the last two or three decades. Although hidden among strong variability from year to year, ice-out dates on 73 lakes have been shifting to an earlier date at a rate of -0.13 days/year from 1965 to 2002, while ice-in dates on 34 lakes have been delayed by 0.75 days/year from 1979 to 2002. From 1990 to 2002 the rates of change increased to -0.25 days/year for ice-out and 1.44 days/year for ice-in. Trend analyses also show that spring runoff at 21 stream gaging sites examined occurs earlier. From 1964 to 2002 the first spring runoff (due to snowmelt) has occurred -0.30 days/year earlier and the first spring peak runoff -0.23 days/year earlier. The stream water temperature records from 15 sites in the Minneapolis/St Paul metropolitan area shows warming by 0.11 °C/year, on the average, from 1977 to 2002. Urban development may have had a strong influence. The analysis of spring stream flow rates was inconclusive, probably because runoff is linked as much to precipitation and land use as to air temperature. Ranking and sorting of annual data shows that a disproportionately large number of early lake ice-out dates has occurred after 1985, but also between 1940 and 1950; similarly late lake ice-in has occurred more frequently since about 1990. Ranking and sorting of first spring runoff dates also gave evidence of earlier occurrences, i.e. climate warming in late winter. A relationship of changes in hydrologic parameters with trends in air temperature records was demonstrated. Ice-out dates were shown to correlate most strongly with average March air temperatures shifting by -2.0 days for a 1 °C increase in March air temperature. Spring runoff dates also show a relationship with March air temperatures; spring runoff dates shift at a rate of -2.5 days/1 °C minimum March air temperature change. Water temperatures at seven river sites in the Minneapolis/St Paul metropolitan area show an average rise of 0.46 °C in river temperature/I °C mean annual air temperature change, but this rate of change probably includes effects of urban development. In conclusion, records of five hydrologic parameters that are closely linked to air temperature show a trend that suggests recent climate warming in Minnesota, and especially from 1990 to 2002. The recent rates of change calculated from the records are very noteworthy, but must not be used to project future parameter values, since trends cannot continue indefinitely, and trend reversals can be seen in some of the long-term records.
User avatar
Posts: 331
Joined: Wed Feb 28, 2007 9:18 am

Invitations sent: 0
Referrals: 0

Return to Global Warming

Who is online

Users browsing this forum: No registered users and 1 guest